A Simple Consistent Non-parametric Estimator for the Regression Function in a Truncated Sample

نویسنده

  • Armando Levy
چکیده

Much recent work has focused on the estimation of regression functions in samples which are truncated or censored. Much of this work has focused on the estimation of a parametric regression function with an error distribution of unknown form. While these method relax a strong parametric assumption about which we seldom have a priori information, they still impose a strong parametric assumption on the regression equation (which is presumably the focus of the analysis). Here we take the other approach. An estimator is proposed for the problem of non-parametric regression when the sample is truncated above or below some known threshold of the dependent variable. We specify the error distribution up to a vector of parameters while estimating the regression function without assuming a parametric form. A simple \back t" estimator based on an initial kernel smooth is proposed. We establish consistency results for this estimator when the error distribution is known up to a nite parameter vector and satis es some regularity conditions. A small monte-carlo study is performed to ascertain the nite sample properties of the estimator. The estimator is found to perform well in our experiment: achieving reasonable average absolute errors relative to the maximum likelihood estimator| especially when truncation is severe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Strong Convergence Rates of the Product-limit Estimator for Left Truncated and Right Censored Data under Association

Non-parametric estimation of a survival function from left truncated data subject to right censoring has been extensively studied in the literature. It is commonly assumed in such studies that the lifetime variables are a sample of independent and identically distributed random variables from the target population. This assumption is often prone to failure in practical studies. For instance, wh...

متن کامل

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

A Note on the Smooth Estimator of the Quantile Function with Left-Truncated Data

This note focuses on estimating the quantile function based on the kernel smooth estimator under a truncated dependent model. The Bahadurtype representation of the kernel smooth estimator is established, and from the Bahadur representation it can be seen that this estimator is strongly consistent.

متن کامل

Admissible and Minimax Estimator of the Parameter $theta$ in a Binomial $Bin( n ,theta)$ ­distribution under Squared Log Error Loss Function in a Lower Bounded Parameter Space

Extended Abstract. The study of truncated parameter space in general is of interest for the following reasons: 1.They often occur in practice. In many cases certain parameter values can be excluded from the parameter space. Nearly all problems in practice have a truncated parameter space and it is most impossible to argue in practice that a parameter is not bounded. In truncated parameter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999